Koszul duality for modules over Lie algebras
Maszczyk, Tomasz ; Weber, Andrzej
Duke Math. J., Tome 115 (2002) no. 1, p. 511-520 / Harvested from Project Euclid
Let $\mathfrak {g}$ be a reductive Lie algebra over a field of characteristic zero. Suppose that $\mathfrak {g}$ acts on a complex of vector spaces $M\sp \bullet$ by $i\sb \lambda$ and $\mathscr {L}\sb \lambda$, which satisfy the same identities that contraction and Lie derivative do for differential forms. Out of this data one defines the cohomology of the invariants and the equivariant cohomology of $M\sp \bullet$. We establish Koszul duality between them.
Publié le : 2002-04-15
Classification:  17B55
@article{1087575185,
     author = {Maszczyk, Tomasz and Weber, Andrzej},
     title = {Koszul duality for modules over Lie algebras},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 511-520},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575185}
}
Maszczyk, Tomasz; Weber, Andrzej. Koszul duality for modules over Lie algebras. Duke Math. J., Tome 115 (2002) no. 1, pp.  511-520. http://gdmltest.u-ga.fr/item/1087575185/