A Kohno-Drinfeld theorem for quantum Weyl groups
Toledano Laredo, Valerio
Duke Math. J., Tome 115 (2002) no. 1, p. 421-451 / Harvested from Project Euclid
Let $\mathfrak {g}$ be a complex, simple Lie algebra with Cartan subalgebra $\mathfrak {h}$ and Weyl group $W$. In [MTL], we introduced a new, $W$-equivariant flat connection on $\mathfrak {h}$ with simple poles along the root hyperplanes and values in any finite-dimensional $\mathfrak {g}$-module $V$. It was conjectured in [TL] that its monodromy is equivalent to the quantum Weyl group action of the generalised braid group of type $\mathfrak {g}$ on $V$ obtained by regarding the latter as a module over the quantum group $U\sb \hbar\mathfrak {g}$. In this paper, we prove this conjecture for $\mathfrak {g}=\mathfrak {sl}\sb n$.
Publié le : 2002-04-15
Classification:  17B37,  16W35,  20F36,  32G34
@article{1087575183,
     author = {Toledano Laredo, Valerio},
     title = {A Kohno-Drinfeld theorem for quantum Weyl groups},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 421-451},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575183}
}
Toledano Laredo, Valerio. A Kohno-Drinfeld theorem for quantum Weyl groups. Duke Math. J., Tome 115 (2002) no. 1, pp.  421-451. http://gdmltest.u-ga.fr/item/1087575183/