Exterior algebra methods for the minimal resolution conjecture
Eisenbud, David ; Popescu, Sorin ; Schreyer, Frank-Olaf ; Walter, Charles
Duke Math. J., Tome 115 (2002) no. 1, p. 379-395 / Harvested from Project Euclid
If $r\geq 6,r\neq 9$, we show that the minimal resolution conjecture (MRC) fails for a general set of $\gamma$ points in $\mathbb {P}\sp r$ for almost $(1/2)\sqrt {r}$ values of $\gamma$. This strengthens the result of D. Eisenbud and S. Popescu [EP1], who found a unique such $\gamma$ for each $r$ in the given range. Our proof begins like a variation of that of Eisenbud and Popescu, but uses exterior algebra methods as explained by Eisenbud, G. Fløystad, and F.- O. Schreyer [EFS] to avoid the degeneration arguments that were the most difficult part of the Eisenbud-Popescu proof. Analogous techniques show that the MRC fails for linearly normal curves of degree $d$ and genus $g$ when $d\geq 3g-2,g\geq 4$, re-proving results of Schreyer, M. Green, and R. Lazarsfeld.
Publié le : 2002-04-01
Classification:  13D02,  14M05,  15A75
@article{1087575156,
     author = {Eisenbud, David and Popescu, Sorin and Schreyer, Frank-Olaf and Walter, Charles},
     title = {Exterior algebra methods for the minimal resolution conjecture},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 379-395},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575156}
}
Eisenbud, David; Popescu, Sorin; Schreyer, Frank-Olaf; Walter, Charles. Exterior algebra methods for the minimal resolution conjecture. Duke Math. J., Tome 115 (2002) no. 1, pp.  379-395. http://gdmltest.u-ga.fr/item/1087575156/