Fundamental solutions for the Tricomi operator, II
Barros-Neto, J. ; Gelfand, I. M.
Duke Math. J., Tome 115 (2002) no. 1, p. 561-584 / Harvested from Project Euclid
In this paper we explicitly calculate fundamental solutions for the Tricomi operator, relative to an arbitrary point in the plane, and show that all such fundamental solutions originate from the hypergeometric function F(1/6,1/6;1;ζ)$ that is obtained when we look for homogeneous solutions to the reduced hyperbolic Tricomi equation.
Publié le : 2002-02-15
Classification:  35M10,  35A08
@article{1087575086,
     author = {Barros-Neto, J. and Gelfand, I. M.},
     title = {Fundamental solutions for the Tricomi operator, II},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 561-584},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575086}
}
Barros-Neto, J.; Gelfand, I. M. Fundamental solutions for the Tricomi operator, II. Duke Math. J., Tome 115 (2002) no. 1, pp.  561-584. http://gdmltest.u-ga.fr/item/1087575086/