Local geometrized Rankin-Selberg method for GL(n)
Lysenko, Sergey
Duke Math. J., Tome 115 (2002) no. 1, p. 451-493 / Harvested from Project Euclid
Following G. Laumon [12], to a nonramified $\ell$-adic local system $E$ of rank $n$ on a curve $X$ one associates a complex of $\ell$-adic sheaves $\sb n\mathscr {K}\sb E$ on the moduli stack of rank $n$ vector bundles on $X$ with a section, which is cuspidal and satisfies the Hecke property for $E$. This is a geometric counterpart of the well-known construction due to J. Shalika [19] and I. Piatetski-Shapiro [18]. We express the cohomology of the tensor product $\sb n\mathscr {K}\sb {E\sb 1}\otimes \sb n\mathscr {K}\sb {E\sb 2}$ in terms of cohomology of the symmetric powers of $X$. This may be considered as a geometric interpretation of the local part of the classical Rankin-Selberg method for ${\rm GL}(n)$ in the framework of the geometric Langlands program.
Publié le : 2002-02-15
Classification:  11R39,  11F70,  11S37,  14H60,  22E50,  22E55
@article{1087575082,
     author = {Lysenko, Sergey},
     title = {Local geometrized Rankin-Selberg method for GL(n)},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 451-493},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575082}
}
Lysenko, Sergey. Local geometrized Rankin-Selberg method for GL(n). Duke Math. J., Tome 115 (2002) no. 1, pp.  451-493. http://gdmltest.u-ga.fr/item/1087575082/