Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals
Tsuzuki, Nobuo
Duke Math. J., Tome 115 (2002) no. 1, p. 385-418 / Harvested from Project Euclid
We discuss Tate-type problems for F-isocrystals, that is, the full faithfulness of the natural restriction functors between categories of overconvergent F-isocrystals on schemes of positive characteristic. We prove it in the cases of unit-root F-isocrystals. Using this result, we prove that an overconvergent unit-root F-isocrystal has a finite monodromy.
Publié le : 2002-02-15
Classification:  14F30,  11G25,  14F10
@article{1087575080,
     author = {Tsuzuki, Nobuo},
     title = {Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 385-418},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575080}
}
Tsuzuki, Nobuo. Morphisms of F-isocrystals and the finite monodromy theorem for unit-root F-isocrystals. Duke Math. J., Tome 115 (2002) no. 1, pp.  385-418. http://gdmltest.u-ga.fr/item/1087575080/