Green's conjecture for the generic r-gonal curve of genus g≥3r−7
Teixidor I Bigas, Montserrat
Duke Math. J., Tome 115 (2002) no. 1, p. 195-222 / Harvested from Project Euclid
The syzygies of a generic canonical curve are expected to be as simple as possible for p≤(g−3)/2. We prove this result here for p≤(g−2)/3 only. The proof is carried out by considering infinitesimal deformations near a hyperelliptic curve.
Publié le : 2002-02-01
Classification:  14H51,  14D15,  14D20
@article{1087575039,
     author = {Teixidor I Bigas, Montserrat},
     title = {Green's conjecture for the generic r-gonal curve
of genus g>=3r-7},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 195-222},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087575039}
}
Teixidor I Bigas, Montserrat. Green's conjecture for the generic r-gonal curve
of genus g≥3r−7. Duke Math. J., Tome 115 (2002) no. 1, pp.  195-222. http://gdmltest.u-ga.fr/item/1087575039/