Symmetric groups and the cup product on the cohomology of Hilbert schemes
Lehn, Manfred ; Sorger, Christoph
Duke Math. J., Tome 110 (2001) no. 1, p. 345-357 / Harvested from Project Euclid
Let $\mathscr {C}(S_n)$ be the $\mathbb {Z}$-module of integer-valued class functions on the symmetric group $S_n)$. We introduce a graded version of the convolution product on $\mathscr {C}(S_n)$, and we show that there is a degree-preserving ring isomorphism $\mathscr {C}(S_n)\longrightarrow H^\ast({\rm Hilb}^n(\mathbb {A_C}^2);\mathbb {Z})$ to the cohomology of the Hilbert scheme of points in the complex affine plane.
Publié le : 2001-11-01
Classification:  14C05,  20B30
@article{1087574860,
     author = {Lehn, Manfred and Sorger, Christoph},
     title = {Symmetric groups and the cup product on the cohomology of Hilbert schemes},
     journal = {Duke Math. J.},
     volume = {110},
     number = {1},
     year = {2001},
     pages = { 345-357},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087574860}
}
Lehn, Manfred; Sorger, Christoph. Symmetric groups and the cup product on the cohomology of Hilbert schemes. Duke Math. J., Tome 110 (2001) no. 1, pp.  345-357. http://gdmltest.u-ga.fr/item/1087574860/