Approximation and symbolic calculus for Toeplitz algebras on the Bergman space
Suárez, Daniel
Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, p. 563-610 / Harvested from Project Euclid
If $f\in L^\infty(\mathbb{D})$ let $T_f$ be the Toeplitz operator on the Bergman space $L^2_a$ of the unit disk $\mathbb{D}$. For a $C^\ast$-algebra $A\subset L^\infty(\mathbb{D})$ let $\mathfrak{T}(A)$ denote the closed operator algebra generated by $\{ T_f : f\in A \}$. We characterize its commutator ideal $\comm(A)$ and the quotient $\mathfrak{T}(A)/ \mathfrak{C}(A)$ for a wide class of algebras $A$. Also, for $n\geq 0$ integer, we define the $n$-Berezin transform $B_nS$ of a bounded operator $S$, and prove that if $f\in L^\infty(\mathbb{D})$ and $f_n = B_n T_f$ then $T_{f_n} \rightarrow T_f$.
Publié le : 2004-06-14
Classification:  Bergman space,  Toeplitz operator,  commutator ideal and abelianization,  32A36,  47B35
@article{1087482027,
     author = {Su\'arez, Daniel},
     title = {Approximation and symbolic calculus for Toeplitz algebras
on the Bergman space},
     journal = {Rev. Mat. Iberoamericana},
     volume = {20},
     number = {1},
     year = {2004},
     pages = { 563-610},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087482027}
}
Suárez, Daniel. Approximation and symbolic calculus for Toeplitz algebras
on the Bergman space. Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, pp.  563-610. http://gdmltest.u-ga.fr/item/1087482027/