The Singularity of Orbital Measures on Compact Lie Groups
Hare, Kathryn E. ; Yee, Wai Ling
Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, p. 517-530 / Harvested from Project Euclid
We find the minimal real number $k$ such that the $k$th power of the Fourier transform of any continuous, orbital measure on a classical, compact Lie group belongs to $l^{2}$. This results from an investigation of the pointwise behaviour of characters on these groups. An application is given to the study of $L^{p}$-improving measures.
Publié le : 2004-06-14
Classification:  orbital measures,  compact Lie group,  characters,  43A80,  22E46,  43A65
@article{1087482025,
     author = {Hare, Kathryn E. and Yee, Wai Ling},
     title = {The Singularity of Orbital Measures on Compact Lie Groups},
     journal = {Rev. Mat. Iberoamericana},
     volume = {20},
     number = {1},
     year = {2004},
     pages = { 517-530},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1087482025}
}
Hare, Kathryn E.; Yee, Wai Ling. The Singularity of Orbital Measures on Compact Lie Groups. Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, pp.  517-530. http://gdmltest.u-ga.fr/item/1087482025/