It is shown that the center of a unital primitive locally $A$-pseudoconvex Hausdorff algebra over
$\mathbb{C}$ and of a unital topologically primitive locally pseudoconvex Fréchet algebra over
$\mathbb{C}$ are topologically isomorphic to $\mathbb{C}$.
@article{1086969311,
author = {Abel, Mati},
title = {The center of primitive locally pseudoconvex algebras},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {11},
number = {1},
year = {2004},
pages = { 191-199},
language = {en},
url = {http://dml.mathdoc.fr/item/1086969311}
}
Abel, Mati. The center of primitive locally pseudoconvex algebras. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp. 191-199. http://gdmltest.u-ga.fr/item/1086969311/