Cohomological Hasse principle for the ring $\mathbb{F}_{p}((t))[[X,Y]]$
Draouil, Belgacem
Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, p. 181-190 / Harvested from Project Euclid
In this paper,we will prove the prime-to-p-part of a cohomological Hasse principle for the ring $A=\mathbb{F}_{p}((t))[[X,Y]].$ The proof is based on recent results by Fujiwara and Panin.
Publié le : 2004-06-14
Classification:  Hasse principle,  Kato's complex,  Purity,  local duality,  completely split coverings,  11G20,  11G45,  14H30,  14C35,  19F05
@article{1086969310,
     author = {Draouil, Belgacem},
     title = {Cohomological Hasse principle for the ring $\mathbb{F}\_{p}((t))[[X,Y]]$},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {11},
     number = {1},
     year = {2004},
     pages = { 181-190},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1086969310}
}
Draouil, Belgacem. Cohomological Hasse principle for the ring $\mathbb{F}_{p}((t))[[X,Y]]$. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp.  181-190. http://gdmltest.u-ga.fr/item/1086969310/