In this paper,we will prove the prime-to-p-part of a cohomological Hasse
principle for the ring $A=\mathbb{F}_{p}((t))[[X,Y]].$ The proof is based on
recent results by Fujiwara and Panin.
Publié le : 2004-06-14
Classification:
Hasse principle,
Kato's complex,
Purity,
local duality,
completely split coverings,
11G20,
11G45,
14H30,
14C35,
19F05
@article{1086969310,
author = {Draouil, Belgacem},
title = {Cohomological Hasse principle for the ring $\mathbb{F}\_{p}((t))[[X,Y]]$},
journal = {Bull. Belg. Math. Soc. Simon Stevin},
volume = {11},
number = {1},
year = {2004},
pages = { 181-190},
language = {en},
url = {http://dml.mathdoc.fr/item/1086969310}
}
Draouil, Belgacem. Cohomological Hasse principle for the ring $\mathbb{F}_{p}((t))[[X,Y]]$. Bull. Belg. Math. Soc. Simon Stevin, Tome 11 (2004) no. 1, pp. 181-190. http://gdmltest.u-ga.fr/item/1086969310/