Approximate Squaring
Lagarias, J. C. ; Sloane, N. J. A.
Experiment. Math., Tome 13 (2004) no. 1, p. 113-128 / Harvested from Project Euclid
We study the "approximate squaring'' map {\small $f(x) := x \lceil x \rceil$} and its behavior when iterated. We conjecture that if f is repeatedly applied to a rational number {\small $r = l/d > 1$} then eventually an integer will be reached. We prove this when {\small $d=2$}, and provide evidence that it is true in general by giving an upper bound on the density of the "exceptional set'' of numbers which fail to reach an integer. We give similar results for a p-adic analogue of f, when the exceptional set is nonempty, and for iterating the "approximate multiplication'' map {\small $f_r(x) := r \lceil x \rceil$}, where r is a fixed rational number. We briefly discuss what happens when "ceiling'' is replaced by "floor'' in the definitions.
Publié le : 2004-05-14
Classification:  Approximate squaring,  approximate multiplication,  iterated maps,  integer sequences,  3x + 1 problem,  Mahler z-numbers,  26A18,  11B83,  11K31,  11Y99
@article{1086894093,
     author = {Lagarias, J. C. and Sloane, N. J. A.},
     title = {Approximate Squaring},
     journal = {Experiment. Math.},
     volume = {13},
     number = {1},
     year = {2004},
     pages = { 113-128},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1086894093}
}
Lagarias, J. C.; Sloane, N. J. A. Approximate Squaring. Experiment. Math., Tome 13 (2004) no. 1, pp.  113-128. http://gdmltest.u-ga.fr/item/1086894093/