A Note on Pseudo-Anosov Maps with Small Growth Rate
Brinkmann, Peter
Experiment. Math., Tome 13 (2004) no. 1, p. 49-54 / Harvested from Project Euclid
We present an explicit sequence of pseudo-Anosov maps $\phi_k: S_{2k}\rightarrow S_{2k}$ of surfaces of genus $2k$ whose growth rates converge to one.
Publié le : 2004-05-14
Classification:  Pseudo-Anosov homeomorphisms,  growth rates,  train tracks,  37E30
@article{1086894089,
     author = {Brinkmann, Peter},
     title = {A Note on Pseudo-Anosov Maps with Small Growth Rate},
     journal = {Experiment. Math.},
     volume = {13},
     number = {1},
     year = {2004},
     pages = { 49-54},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1086894089}
}
Brinkmann, Peter. A Note on Pseudo-Anosov Maps with Small Growth Rate. Experiment. Math., Tome 13 (2004) no. 1, pp.  49-54. http://gdmltest.u-ga.fr/item/1086894089/