Asymptotics for orthogonal polynomials off the circle
Khaldi, R. ; Benzine, R.
J. Appl. Math., Tome 2004 (2004) no. 1, p. 37-53 / Harvested from Project Euclid
We study the strong asymptotics of orthogonal polynomials with respect to a measure of the type ${d\mu }/{2\pi }+\sum_{j=1}^{\infty }A_{j}\delta (z-z_{k})$ , where $\mu $ is a positive measure on the unit circle $\Gamma $ satisfying the Szegö condition and $\{ z_{j}\} _{j=1}^{\infty }$ are fixed points outside $\Gamma $ . The masses $\{ A_{j}\}_{j=1}^{\infty }$ are positive numbers such that $\sum_{j=1}^{\infty }A_{j}<+\infty $ . Our main result is the explicit strong asymptotic formulas for the corresponding orthogonal polynomials.
Publié le : 2004-05-16
Classification:  30C40,  30D50,  30E10,  30E15,  42C05
@article{1086103879,
     author = {Khaldi, R. and Benzine, R.},
     title = {Asymptotics for orthogonal polynomials off the circle},
     journal = {J. Appl. Math.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 37-53},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1086103879}
}
Khaldi, R.; Benzine, R. Asymptotics for orthogonal polynomials off the circle. J. Appl. Math., Tome 2004 (2004) no. 1, pp.  37-53. http://gdmltest.u-ga.fr/item/1086103879/