Limiting vorticities for the Ginzburg-Landau equations
Sandier, Etienne ; Serfaty, Sylvia
Duke Math. J., Tome 120 (2003) no. 3, p. 403-446 / Harvested from Project Euclid
We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the "London limit" of a Ginzburg-Landau parameter $\kappa$ tending to $\infty$. We examine the asymptotic behavior of the "vorticity measures" associated to the vortices of the solution, and we prove that passing to the limit in the equations (via the "stress-energy tensor") yields a criticality condition on the limiting measures. This condition allows us to describe the possible locations and densities of the vortices. We establish analogous results for the Ginzburg-Landau equation without magnetic field.
Publié le : 2003-04-15
Classification:  82D55,  35B25,  35J20,  35Q55,  58E50
@article{1085598401,
     author = {Sandier, Etienne and Serfaty, Sylvia},
     title = {Limiting vorticities for the Ginzburg-Landau equations},
     journal = {Duke Math. J.},
     volume = {120},
     number = {3},
     year = {2003},
     pages = { 403-446},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1085598401}
}
Sandier, Etienne; Serfaty, Sylvia. Limiting vorticities for the Ginzburg-Landau equations. Duke Math. J., Tome 120 (2003) no. 3, pp.  403-446. http://gdmltest.u-ga.fr/item/1085598401/