The Alexander polynomial of a plane curve singularity via the ring of functions on it
Campillo, A. ; Delgado, F. ; Gusein-Zade, S. M.
Duke Math. J., Tome 120 (2003) no. 3, p. 125-156 / Harvested from Project Euclid
We prove two formulae that express the Alexander polynomial $\Delta\sp C$ of several variables of a plane curve singularity $C$ in terms of the ring $\mathscr {O}\sb C$ of germs of analytic functions on the curve. One of them expresses $\Delta\sp C$ in terms of dimensions of some factors corresponding to a (multi-indexed) filtration on the ring $\mathscr {O}\sb C$. The other one gives the coefficients of the Alexander polynomial $\Delta\sp C$ as Euler characteristics of some explicitly described spaces (complements to arrangements of projective hyperplanes).
Publié le : 2003-03-15
Classification:  14H20,  32Sxx
@article{1085598340,
     author = {Campillo, A. and Delgado, F. and Gusein-Zade, S. M.},
     title = {The Alexander polynomial of a plane curve singularity via the ring of functions on it},
     journal = {Duke Math. J.},
     volume = {120},
     number = {3},
     year = {2003},
     pages = { 125-156},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1085598340}
}
Campillo, A.; Delgado, F.; Gusein-Zade, S. M. The Alexander polynomial of a plane curve singularity via the ring of functions on it. Duke Math. J., Tome 120 (2003) no. 3, pp.  125-156. http://gdmltest.u-ga.fr/item/1085598340/