Pair correlation densities of inhomogeneous quadratic forms, II
Marklof, Jens
Duke Math. J., Tome 115 (2002) no. 1, p. 409-434 / Harvested from Project Euclid
Denote by $\parallel\cdot\parallel$ the Euclidean norm in $\mathbb {R}\sp k$. We prove that the local pair correlation density of the sequence $\parallel\mathbf {m}-\mathbf {\alpha}\parallel\sp k,\mathbf {m}\in \mathbb {Z}\sp k$, is that of a Poisson process, under Diophantine conditions on the fixed vector $\mathbf {\alpha}\in \mathbb {R}\sp k$ in dimension two, vectors $\mathbf {\alpha}$ of any Diophantine type are admissible; in higher dimensions $(k>2)$, Poisson statistics are observed only for Diophantine vectors of type $\kappa<(k-1)/(k-2)$. Our findings support a conjecture of M. Berry and M. Tabor on the Poisson nature of spectral correlations in quantized integrable systems.
Publié le : 2002-12-01
Classification:  11P21,  11Fxx,  37Jxx,  37N20,  81Q10
@article{1085598175,
     author = {Marklof, Jens},
     title = {Pair correlation densities of inhomogeneous quadratic forms, II},
     journal = {Duke Math. J.},
     volume = {115},
     number = {1},
     year = {2002},
     pages = { 409-434},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1085598175}
}
Marklof, Jens. Pair correlation densities of inhomogeneous quadratic forms, II. Duke Math. J., Tome 115 (2002) no. 1, pp.  409-434. http://gdmltest.u-ga.fr/item/1085598175/