A new characterization of submanifolds with parallel mean curvature vector in $S^{n+p}$
de Barros, Abd\^enago Alves ; Brasil Jr., Aldir Chaves ; de Soursa Jr., Luis Amancio Machado
Kodai Math. J., Tome 27 (2004) no. 1, p. 45-56 / Harvested from Project Euclid
In this work we will consider compact submanifold $M^{n}$ immersed in the Euclidean sphere $S^{n+p}$ with parallel mean curvature vector and we introduce a Schr\"{o}dinger operator $L=-\Delta+V$, where $\Delta$ stands for the Laplacian whereas $V$ is some potential on $M^{n}$ which depends on $n,p$ and $h$ that are respectively, the dimension, codimension and mean curvature vector of $M^{n}$. We will present a gap estimate for the first eigenvalue $\mu_{1}$ of $L$, by showing that either $\mu_{1}=0$ or $\mu_{1}\leq-n(1+H^{2})$. As a consequence we obtain new characterizations of spheres, Clifford tori and Veronese surfaces that extend a work due to Wu \cite{wu} for minimal submanifolds.
Publié le : 2004-03-14
Classification: 
@article{1085143788,
     author = {de Barros, Abd\^enago Alves and Brasil Jr., Aldir Chaves and de Soursa Jr., Luis Amancio Machado},
     title = {A new characterization of submanifolds with parallel mean curvature vector in $S^{n+p}$},
     journal = {Kodai Math. J.},
     volume = {27},
     number = {1},
     year = {2004},
     pages = { 45-56},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1085143788}
}
de Barros, Abd\^enago Alves; Brasil Jr., Aldir Chaves; de Soursa Jr., Luis Amancio Machado. A new characterization of submanifolds with parallel mean curvature vector in $S^{n+p}$. Kodai Math. J., Tome 27 (2004) no. 1, pp.  45-56. http://gdmltest.u-ga.fr/item/1085143788/