The period-index problem for the Brauer group of an algebraic surface
de Jong, A. J.
Duke Math. J., Tome 121 (2004) no. 1, p. 71-94 / Harvested from Project Euclid
In this paper we show that the period equals the index for elements of Brauer groups of (function fields of) surfaces. A key idea of the proof is that any Azumaya algebra over a surface can be transformed into an Azumaya algebra that is unobstructed.
Publié le : 2004-05-15
Classification:  14F22 16K50
@article{1084479319,
     author = {de Jong, A. J.},
     title = {The period-index problem for the Brauer group of an algebraic surface},
     journal = {Duke Math. J.},
     volume = {121},
     number = {1},
     year = {2004},
     pages = { 71-94},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1084479319}
}
de Jong, A. J. The period-index problem for the Brauer group of an algebraic surface. Duke Math. J., Tome 121 (2004) no. 1, pp.  71-94. http://gdmltest.u-ga.fr/item/1084479319/