Positive solutions for singular discrete boundary value problems
Cecchi, Mariella ; Došlá, Zuzana ; Marini, Mauro
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 271-283 / Harvested from Project Euclid
We study the existence of zero-convergent solutions for the second-order nonlinear difference equation $\Delta(a_{n}\Phi_{p}(\Delta x_{n}))=g(n,x_{n+1})$ , where $\Phi_{p} (u)=|u|^{p-2}u$ , $p>1$ , $\{a_{n}\}$ is a positive real sequence for $n\geq1$ , and $g$ is a positive continuous function on $\mathbb{N}\times(0,u_{0})$ , $0#60;u_{0}\leq\infty$ . The effects of singular nonlinearities and of the forcing term are treated as well.
Publié le : 2004-04-27
Classification:  39A10
@article{1083679177,
     author = {Cecchi, Mariella and Do\v sl\'a, Zuzana and Marini, Mauro},
     title = {Positive solutions for singular discrete boundary value problems},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 271-283},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1083679177}
}
Cecchi, Mariella; Došlá, Zuzana; Marini, Mauro. Positive solutions for singular discrete boundary value problems. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  271-283. http://gdmltest.u-ga.fr/item/1083679177/