Strong convergence of an iterative sequence for maximal monotone operators in a Banach space
Kohsaka, Fumiaki ; Takahashi, Wataru
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 239-249 / Harvested from Project Euclid
We first introduce a modified proximal point algorithm for maximal monotone operators in a Banach space. Next, we obtain a strong convergence theorem for resolvents of maximal monotone operators in a Banach space which generalizes the previous result by Kamimura and Takahashi in a Hilbert space. Using this result, we deal with the convex minimization problem and the variational inequality problem in a Banach space.
Publié le : 2004-04-14
Classification:  47H05,  47J25
@article{1083679149,
     author = {Kohsaka, Fumiaki and Takahashi, Wataru},
     title = {Strong convergence of an iterative sequence for maximal monotone operators in a Banach space},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 239-249},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1083679149}
}
Kohsaka, Fumiaki; Takahashi, Wataru. Strong convergence of an iterative sequence for maximal monotone operators in a Banach space. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  239-249. http://gdmltest.u-ga.fr/item/1083679149/