Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
Hirano, Norimichi ; Shioji, Naoki
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 183-203 / Harvested from Project Euclid
In the case of $K \neq \overline{D(A)}$ , we study Cauchy problems and periodic problems for nonlinear evolution equation $ u(t) \in K$ , $u'(t)+Au(t)\ni f(t,u(t))$ , $0 \leq t \leq T$ , where $A$ is a maximal monotone operator on a Hilbert space $H$ , $K$ is a closed, convex subset of $H$ , $V$ is a subspace of $H$ , and $f: [0,T] \times (K \cap V) \rightarrow H$ is of Carathéodory type.
Publié le : 2004-04-14
Classification:  47H06,  47H20,  35B10
@article{1083679146,
     author = {Hirano, Norimichi and Shioji, Naoki},
     title = {Invariant sets for nonlinear evolution equations, Cauchy problems
and periodic problems},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 183-203},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1083679146}
}
Hirano, Norimichi; Shioji, Naoki. Invariant sets for nonlinear evolution equations, Cauchy problems
and periodic problems. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  183-203. http://gdmltest.u-ga.fr/item/1083679146/