Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
Jones, Galin L. ; Hobert, James P.
Ann. Statist., Tome 32 (2004) no. 1, p. 784-817 / Harvested from Project Euclid
We consider Gibbs and block Gibbs samplers for a Bayesian hierarchical version of the one-way random effects model. Drift and minorization conditions are established for the underlying Markov chains. The drift and minorization are used in conjunction with results from J. S. Rosenthal [J. Amer. Statist. Assoc. 90 (1995) 558–566] and G. O. Roberts and R. L. Tweedie [Stochastic Process. Appl. 80 (1999) 211–229] to construct analytical upper bounds on the distance to stationarity. These lead to upper bounds on the amount of burn-in that is required to get the chain within a prespecified (total variation) distance of the stationary distribution. The results are illustrated with a numerical example.
Publié le : 2004-04-14
Classification:  Block Gibbs sampler,  burn-in,  convergence rate,  drift condition,  geometric ergodicity,  Markov chain,  minorization condition,  Monte Carlo,  total variation distance,  60J10,  62F15
@article{1083178947,
     author = {Jones, Galin L. and Hobert, James P.},
     title = {Sufficient burn-in for Gibbs samplers for a hierarchical random effects model},
     journal = {Ann. Statist.},
     volume = {32},
     number = {1},
     year = {2004},
     pages = { 784-817},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1083178947}
}
Jones, Galin L.; Hobert, James P. Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist., Tome 32 (2004) no. 1, pp.  784-817. http://gdmltest.u-ga.fr/item/1083178947/