Minimax estimation of linear functionals over nonconvex parameter spaces
Cai, T. Tony ; Low, Mark G.
Ann. Statist., Tome 32 (2004) no. 1, p. 552-576 / Harvested from Project Euclid
The minimax theory for estimating linear functionals is extended to the case of a finite union of convex parameter spaces. Upper and lower bounds for the minimax risk can still be described in terms of a modulus of continuity. However in contrast to the theory for convex parameter spaces rate optimal procedures are often required to be nonlinear. A construction of such nonlinear procedures is given. The results developed in this paper have important applications to the theory of adaptation.
Publié le : 2004-04-14
Classification:  Constrained risk inequality,  linear functionals,  minimax estimation,  modulus of continuity,  nonparametric functional estimation,  white noise model,  62G99,  62F12,  62C20,  62M99
@article{1083178938,
     author = {Cai, T. Tony and Low, Mark G.},
     title = {Minimax estimation of linear functionals over nonconvex parameter spaces},
     journal = {Ann. Statist.},
     volume = {32},
     number = {1},
     year = {2004},
     pages = { 552-576},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1083178938}
}
Cai, T. Tony; Low, Mark G. Minimax estimation of linear functionals over nonconvex parameter spaces. Ann. Statist., Tome 32 (2004) no. 1, pp.  552-576. http://gdmltest.u-ga.fr/item/1083178938/