Motivic integration on smooth rigid varieties and invariants of degenerations
Loeser, François ; Sebag, Julien
Duke Math. J., Tome 120 (2003) no. 3, p. 315-344 / Harvested from Project Euclid
We develop a theory of motivic integration for smooth rigid varieties. As an application we obtain a motivic analogue for rigid varieties of Serre's invariant for $p$-adic varieties. Our construction provides new geometric birational invariants of degenerations of algebraic varieties. For degenerations of Calabi-Yau varieties, our results take a stronger form.
Publié le : 2003-08-15
Classification:  14G22,  11S80,  14D07,  14Jxx
@article{1082744734,
     author = {Loeser, Fran\c cois and Sebag, Julien},
     title = {Motivic integration on smooth rigid varieties and invariants of degenerations},
     journal = {Duke Math. J.},
     volume = {120},
     number = {3},
     year = {2003},
     pages = { 315-344},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1082744734}
}
Loeser, François; Sebag, Julien. Motivic integration on smooth rigid varieties and invariants of degenerations. Duke Math. J., Tome 120 (2003) no. 3, pp.  315-344. http://gdmltest.u-ga.fr/item/1082744734/