Squarefree values of multivariable polynomials
Poonen, Bjorn
Duke Math. J., Tome 120 (2003) no. 3, p. 353-373 / Harvested from Project Euclid
Given $f\in \mathbf {Z}[x\sb 1,\ldots x\sb n]$, we compute the density of $x\in \mathbf {Z}\sp n$ such that $f(x)$ is squarefree, assuming the abc-conjecture. Given $f,g\in \mathbf {Z}[x\sb 1,\ldots x\sb n]$, we compute unconditionally the density of $x\in \mathbf {Z}\sp n$ such that $\gcd(f(x),g(x))=1$. Function field analogues of both results are proved unconditionally. Finally, assuming the abc-conjecture, given $f\in \mathbf {Z}[x]$, we estimate the size of the image of $f(\{1,2,\ldots n\})$ in $(\mathbf {Q}\sp \ast/\mathbf {Q}\sp {\ast 2})\cup \{0\}$.
Publié le : 2003-06-01
Classification:  11Bxx,  11Cxx
@article{1082744651,
     author = {Poonen, Bjorn},
     title = {Squarefree values of multivariable polynomials},
     journal = {Duke Math. J.},
     volume = {120},
     number = {3},
     year = {2003},
     pages = { 353-373},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1082744651}
}
Poonen, Bjorn. Squarefree values of multivariable polynomials. Duke Math. J., Tome 120 (2003) no. 3, pp.  353-373. http://gdmltest.u-ga.fr/item/1082744651/