On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds
Viehweg, Eckart ; Zuo, Kang
Duke Math. J., Tome 120 (2003) no. 3, p. 103-150 / Harvested from Project Euclid
We show that the moduli stack $\mathscr {M}\sb h$ of canonically polarized complex manifolds with Hilbert polynomial $h$ is Brody hyperbolic. Hence if $M\sb h$ denotes the corresponding coarse moduli scheme, and if $U \to M\sb h$ is a quasi-finite morphism, induced by a family, then there are no nonconstant holomorphic maps $\mathbb {C}\to U$.
Publié le : 2003-05-15
Classification:  32G13,  14J10,  32Q45
@article{1082744556,
     author = {Viehweg, Eckart and Zuo, Kang},
     title = {On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds},
     journal = {Duke Math. J.},
     volume = {120},
     number = {3},
     year = {2003},
     pages = { 103-150},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1082744556}
}
Viehweg, Eckart; Zuo, Kang. On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds. Duke Math. J., Tome 120 (2003) no. 3, pp.  103-150. http://gdmltest.u-ga.fr/item/1082744556/