On overload in a storage model, with a self-similar and infinitely divisible input
Albin, J. M. P. ; Samorodnitsky, Gennady
Ann. Appl. Probab., Tome 14 (2004) no. 1, p. 820-844 / Harvested from Project Euclid
Let {X(t)}t≥0 be a locally bounded and infinitely divisible stochastic process, with no Gaussian component, that is self-similar with index H>0. Pick constants γ>H and c>0. Let ν be the Lévy measure on ℝ[0,∞) of X, and suppose that R(u)≡ν({y∈ℝ[0,∞):sup t≥0y(t)/(1+ctγ)>u}) is suitably “heavy tailed” as u→∞ (e.g., subexponential with positive decrease). For the “storage process” Y(t)≡sup s≥t(X(s)−X(t)−c(s−t)γ), we show that P{sup s∈[0,t(u)]Y(s)>u}∼P{Y({t̂}(u))>u} as u→∞, when 0≤t̂(u)≤t(u) do not grow too fast with u [e.g., t(u)=o(u1/γ)].
Publié le : 2004-05-14
Classification:  Heavy tails,  infinitely divisible process,  Lévy process,  self-similar process,  stable process,  stationary increment process,  subexponential distribution,  storage process,  60G18,  60G70,  60E07,  60G10
@article{1082737113,
     author = {Albin, J. M. P. and Samorodnitsky, Gennady},
     title = {On overload in a storage model, with a self-similar and infinitely divisible input},
     journal = {Ann. Appl. Probab.},
     volume = {14},
     number = {1},
     year = {2004},
     pages = { 820-844},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1082737113}
}
Albin, J. M. P.; Samorodnitsky, Gennady. On overload in a storage model, with a self-similar and infinitely divisible input. Ann. Appl. Probab., Tome 14 (2004) no. 1, pp.  820-844. http://gdmltest.u-ga.fr/item/1082737113/