On some inequalities of local times for Azéma
Chao, Tsung-Ming ; Chou, Ching-Sung
Bernoulli, Tome 6 (2000) no. 6, p. 435-445 / Harvested from Project Euclid
Let $(u_t,{\cal G}_t)_{t\geq 0}$ be Azéma martingale and its filtration, and let $(\lambda^x_t; x \in \R, t\geq 0)$ be the local times of the Azéma martingale defined by the following Tanaka formula: $$ u_t1_{\{u_t>x\}}=\int_0^t 1_{\{u_{s^-}>x\}}\d u_s +\half \lambda_t^x . $$ Then, for every $({\cal G}_t)_{t\geq 0}$ stopping time T and every p>0, there exist two universal constants cp, Cp >0 depending only on p, such that $$ c_p\|T^{1/2}\|_p \leq \|\lambda^*_T\|_p \leq C_p \|T^{1/2}\|_{p}, $$ where $\lambda^*_t=\sup_{x\in \R} \lambda^x_t$ .
Publié le : 2000-06-14
Classification:  Azéma martingales,  Garsia-Rodemich-Rumsey lemma,  local time
@article{1081616699,
     author = {Chao, Tsung-Ming and Chou, Ching-Sung},
     title = {On some inequalities of local times for Az\'ema},
     journal = {Bernoulli},
     volume = {6},
     number = {6},
     year = {2000},
     pages = { 435-445},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1081616699}
}
Chao, Tsung-Ming; Chou, Ching-Sung. On some inequalities of local times for Azéma. Bernoulli, Tome 6 (2000) no. 6, pp.  435-445. http://gdmltest.u-ga.fr/item/1081616699/