An Edgeworth expansion for finite-population U-statistics
Bloznelis, Mindaugas ; Götze, Friedrich
Bernoulli, Tome 6 (2000) no. 6, p. 729-760 / Harvested from Project Euclid
Suppose that U is a U-statistic of degree 2 based on N random observations drawn without replacement from a finite population. For the distribution of a standardized version of U we construct an Edgeworth expansion with remainder O(N-1) provided that the linear part of the statistic satisfies a Cramér type condition.
Publié le : 2000-08-14
Classification:  central limit theorem,  Edgeworth expansion,  finite population,  U-statistic,  sampling without replacement
@article{1081449604,
     author = {Bloznelis, Mindaugas and G\"otze, Friedrich},
     title = {An Edgeworth expansion for finite-population U-statistics},
     journal = {Bernoulli},
     volume = {6},
     number = {6},
     year = {2000},
     pages = { 729-760},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1081449604}
}
Bloznelis, Mindaugas; Götze, Friedrich. An Edgeworth expansion for finite-population U-statistics. Bernoulli, Tome 6 (2000) no. 6, pp.  729-760. http://gdmltest.u-ga.fr/item/1081449604/