An elliptic problem with critical exponent and positive Hardy potential
Chen, Shaowei ; Li, Shujie
Abstr. Appl. Anal., Tome 2004 (2004) no. 1, p. 91-98 / Harvested from Project Euclid
We give the existence result and the vanishing order of the solution in $0$ for the following equation: $ -\triangle u(x)+(\mu/|x|^{2}) u(x) =\lambda u(x) +u^{2^{*}-1}(x)$ , where $x \in B_{1}$ , $\mu>0$ , and the potential $\mu/{|x|^{2}}-\lambda$ is positive in $B_{1}$ .
Publié le : 2004-03-17
Classification:  35J20,  35J25
@article{1081267501,
     author = {Chen, Shaowei and Li, Shujie},
     title = {An elliptic problem with critical exponent and positive Hardy potential},
     journal = {Abstr. Appl. Anal.},
     volume = {2004},
     number = {1},
     year = {2004},
     pages = { 91-98},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1081267501}
}
Chen, Shaowei; Li, Shujie. An elliptic problem with critical exponent and positive Hardy potential. Abstr. Appl. Anal., Tome 2004 (2004) no. 1, pp.  91-98. http://gdmltest.u-ga.fr/item/1081267501/