A large-deviation principle for random evolution equations
Mellouk, Mohamed
Bernoulli, Tome 6 (2000) no. 6, p. 977-999 / Harvested from Project Euclid
We consider the family of stochastic processes Xε= {Xε(t), 0≤t≤1}, ε>0, where Xε is the solution of the Itô stochastic differential equation

//\rm d}X^ε(t)=\sqrt{ε}σ(X^ε(t),Z(t))\rm d}W_t+b(X^ε(t),Y(t))\rm d}t,//

whose coefficients depend on processes Z(t)= {Z(t),t∈[0,1]} and Y(t)={Y(t),t∈[0,1]}. Using an extended `contraction principle', we give the large-deviation principle (LDP) of Xε as ε→0. This extends the LDP for a random evolution equation, proved by Yi-Jun Hu, to the case of random diffusion coefficients.

Publié le : 2000-12-14
Classification:  Hölder spaces,  large-deviation principle,  random evolution equations,  relative compactness
@article{1081194155,
     author = {Mellouk, Mohamed},
     title = {A large-deviation principle for random evolution equations},
     journal = {Bernoulli},
     volume = {6},
     number = {6},
     year = {2000},
     pages = { 977-999},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1081194155}
}
Mellouk, Mohamed. A large-deviation principle for random evolution equations. Bernoulli, Tome 6 (2000) no. 6, pp.  977-999. http://gdmltest.u-ga.fr/item/1081194155/
© 2019 - 2025 MDML