It was conjectured in [26] that, for all submanifolds $M^n$ of all real space forms $\tilde{M}^{n+m}(c)$, the Wintgen inequality $\rho \le H^2 - \rho ^\perp + c$ is valid at all points of $M$, whereby $\rho $ is the normalised scalar curvature of the Riemannian manifold $M$ and $H^2$, respectively $\rho ^\perp $, are the squared mean curvature and the normalised scalar normal curvature of the submanifold $M$ in the ambient space $\tilde{M}$, and this conjecture was shown there to be true whenever codimension $m = 2$. For a given Riemannian manifold $M$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^n$ in space forms $\tilde{M}^{n+m}(c)$, the value of the intrinsic scalar curvature $\rho $ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2 - \rho ^\perp + c$ that $M$ in any case can not avoid to “undergo” as a submanifold of $\tilde{M}$. And, from this point of view, then $M$ is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in $\tilde{M}$ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension $m = 2$ and dimension $n > 3$, we will show that the submanifolds $M$ which realise such minimal extrinsic curvatures in $\tilde{M}$ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20].
@article{108096, author = {Miroslava Petrovi\'c-Torga\v sev and Leopold C. A. Verstraelen}, title = {On Deszcz symmetries of~Wintgen~ideal~submanifolds}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {57-67}, zbl = {1212.53028}, mrnumber = {2431231}, language = {en}, url = {http://dml.mathdoc.fr/item/108096} }
Petrović-Torgašev, Miroslava; Verstraelen, Leopold C. A. On Deszcz symmetries of Wintgen ideal submanifolds. Archivum Mathematicum, Tome 044 (2008) pp. 57-67. http://gdmltest.u-ga.fr/item/108096/
PDE’s, Submanifolds and Affine Differential Geometry, vol. 57, ch. On some type of curvature conditions, Banach Center Publ., 2002. (2002)
Symmetry properties of $3-$dimensional D’Atri spaces, Kyungpook Math. J. 46 (2006), 367–376. (2006) | MR 2261390 | Zbl 1120.53010
Some remarks on the geometry of austere manifolds, Bol. Soc. Brasil. Math. (N.S.) 21 (1991), 133–157. (1991) | Article | MR 1139562 | Zbl 0760.53034
Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1928. (1928) | MR 0020842
Geometry of Submanifolds, M. Dekker Publ. Co., New York, 1973. (1973) | MR 0353212 | Zbl 0262.53036
Some conformal invariants of submanifolds and their applications, Boll. Un. Mat. Ital. 10 (1974), 380–385. (1974) | MR 0370436 | Zbl 0321.53042
Geometry of Submanifolds and Its Applications, Science University of Tokyo, 1981. (1981) | MR 0627323 | Zbl 0474.53050
Handbook of Differential Geometry, vol. 1, ch. Riemannian submanifolds, pp. 187–418, North-Holland, Elsevier, Amsterdam, 2000. (2000) | MR 1736854
On the DDVV conjecture and the comass in calibrated geometry (I), preprint. | MR 2429620 | Zbl 1180.53055
On Ricci pseudo-symmetric hypersurfaces in spaces of constant curvature, Results in Math. 27 (1995), 227–236. (1995) | Article | MR 1331096
On pseudosymmetric spaces, Bull. Soc. Math. Belg., Série A 44 (1992), 1–34. (1992) | MR 1315367 | Zbl 0808.53012
On Ricci pseudosymmetric hypersurfaces in space forms, Demonstratio Math. 34 (2004), 203–214. (2004) | MR 2053116 | Zbl 1055.53011
Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math. 22 (1994), 139–157. (1994) | MR 1283222 | Zbl 0817.53008
Curvature properties of Cartan hypersurfaces, Colloq. Math. 67 (1994), 91–98. (1994) | MR 1292946 | Zbl 0816.53032
Three-dimensional submanifolds of $E^5$ with extremal normal curvature, preprint.
A pinching theorem for the normal scalar curvature of invariant submanifolds, J. Geom. Phys. 57 (2007), 833–840. (2007) | Article | MR 2275193 | Zbl 1108.53020
Normal curvature of surfaces in space forms, Pacific J. Math. 106 (1983), 95–103. (1983) | Article | MR 0694674 | Zbl 0515.53044
Classification of the pseudo-symmetric space-times, J. Math. Phys. 45 (2004), 2343–2346. (2004) | Article | MR 2059697
Differential Geometry and Topology, Discrete and Computational Geometry, ch. Curvature and symmetries of parallel transport, pp. 197–238, IOS Press, NATO Science Series, 2005. (2005)
Properties of a scalar curvature invariant depending on two planes, Manuscripta Math. 122 (2007), 59–72. (2007) | Article | MR 2287700 | Zbl 1109.53020
On the parallel transport of the Ricci curvatures, J. Geom. Phys. 57 (2007), 1771–1777. (2007) | Article | MR 2330665 | Zbl 1169.53016
Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces, Rend. Mat. Appl. (7) 17 (1997), 477–512. (1997) | MR 1608724 | Zbl 0889.53026
Nozione di parallelismo in una varietá qualcunque e conseguente spezificazione geometrica della curvatura Riemanniana, Rend. Circ. Mat. Palermo (2) 42 (1917), 173–204. (1917)
Sur une famille de A-surfaces d’un espace euclidien $E^4$, Proc. 10. Österreichischer Mathematiker Kongress, Insbruck, 1981. (1981)
Die direkte Analysis zur neueren Relativitätstheorie, Verhandelingen Kon. Akad. van Wetenschappen te Amsterdam, Sectie I 12 (6) (1918), 1–95. (1918)
A pointwise inequality in submanifold theory, Arch. Math. (Basel) 35 (1999), 115–128. (1999) | MR 1711669 | Zbl 1054.53075
DDVV conjecture, preprint.
Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. I. The local version, J. Differential Geom. 17 (1982), 531–582. (1982) | MR 0683165
Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. II. The global version, Geom. Dedicata 19 (1985), 65–108. (1985) | Article | MR 0797152
Three-dimensional Geometry and Topology, vol. 1, Princeton University Press, 1997. (1997) | MR 1435975 | Zbl 0873.57001
Geometry and Topology of Submanifolds, vol. VI, ch. Comments on the pseudo-symmetry in the sense of Deszcz, pp. 119–209, World Sci. Publ. Co., Singapore, 1994. (1994) | MR 1315102 | Zbl 0832.00044
Sur l’inégalité de Chen-Willmore, C. R. Acad. Sci. Paris 288 (1979), 993–995. (1979) | MR 0540375 | Zbl 0421.53003