Endpoint estimates from restricted rearrangement inequalities
Carro, María J. ; Martín, Joaquim
Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, p. 131-150 / Harvested from Project Euclid
Let $T$ be a sublinear operator such that $(Tf)^*(t)\le h(t, \|f\|_1)$ for some positive function $h(t,s)$ and every function $f$ such that $\|f\|_{\infty}\le 1$. Then, we show that $T$ can be extended continuously from a logarithmic type space into a weighted weak Lorentz space. This type of result is connected with the theory of restricted weak type extrapolation and extends a recent result of Arias-de-Reyna concerning the pointwise convergence of Fourier series to a much more general context.
Publié le : 2004-03-14
Classification:  rearrangement inequality,  real interpolation,  Banach couples,  extrapolation theory,  Carleson's operator,  46M35,  47A30
@article{1080928423,
     author = {Carro, Mar\'\i a J. and Mart\'\i n, Joaquim},
     title = {Endpoint estimates from restricted rearrangement inequalities},
     journal = {Rev. Mat. Iberoamericana},
     volume = {20},
     number = {1},
     year = {2004},
     pages = { 131-150},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080928423}
}
Carro, María J.; Martín, Joaquim. Endpoint estimates from restricted rearrangement inequalities. Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, pp.  131-150. http://gdmltest.u-ga.fr/item/1080928423/