Isometries between C*-algebras
Chu, Cho-Ho ; Wong, Ngai-Ching
Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, p. 87-105 / Harvested from Project Euclid
Let $A$ and $B$ be C*-algebras and let $T$ be a linear isometry from $A$ \emph{into} $B$. We show that there is a largest projection $p$ in $B^{**}$ such that $T(\cdot)p : A \longrightarrow B^{**}$ is a Jordan triple homomorphism and $$ T(a b^* c + c b^* a) p= T(a) T(b)^* T(c) p + T(c) T(b)^* T(a) p $$ for all $a$, $b$, $c$ in $A$. When $A$ is abelian, we have $\|T(a)p\|=\|a\|$ for all $a$ in $A$. It follows that a (possibly non-surjective) linear isometry between any C*-algebras reduces {\it locally} to a Jordan triple isomorphism, by a projection.
Publié le : 2004-03-14
Classification:  C*-algebra,  JB*-triple,  isometry,  Banach manifold,  46L05,  46B04,  46L70,  32M15
@article{1080928421,
     author = {Chu, Cho-Ho and Wong, Ngai-Ching},
     title = {Isometries between C*-algebras},
     journal = {Rev. Mat. Iberoamericana},
     volume = {20},
     number = {1},
     year = {2004},
     pages = { 87-105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080928421}
}
Chu, Cho-Ho; Wong, Ngai-Ching. Isometries between C*-algebras. Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, pp.  87-105. http://gdmltest.u-ga.fr/item/1080928421/