Some nonexistence results for positive solutions of elliptic equations in unbounded domains
Damascelli, Lucio ; Gladiali, Francesca
Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, p. 67-86 / Harvested from Project Euclid
We prove some Liouville type theorems for positive solutions of semilinear elliptic equations in the whole space $\mathbb{R}^N$, $N\geq 3$, and in the half space $\mathbb{R}^N_{+}$ with different boundary conditions, using the technique based on the Kelvin transform and the Alexandrov-Serrin method of moving hyperplanes. In particular we get new nonexistence results for elliptic problems in half spaces satisfying mixed (Dirichlet-Neumann) boundary conditions.
Publié le : 2004-03-14
Classification:  Liouville theorems,  Kelvin transform,  maximum principle,  moving plane,  35B05,  35B45,  35B50
@article{1080928420,
     author = {Damascelli, Lucio and Gladiali, Francesca},
     title = {Some nonexistence results for positive solutions of
elliptic equations in unbounded domains},
     journal = {Rev. Mat. Iberoamericana},
     volume = {20},
     number = {1},
     year = {2004},
     pages = { 67-86},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1080928420}
}
Damascelli, Lucio; Gladiali, Francesca. Some nonexistence results for positive solutions of
elliptic equations in unbounded domains. Rev. Mat. Iberoamericana, Tome 20 (2004) no. 1, pp.  67-86. http://gdmltest.u-ga.fr/item/1080928420/