Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal{F}}\mathbb{M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.
@article{108092, author = {W\l odzimierz M. Mikulski}, title = {The jet prolongations of $2$-fibred manifolds and~the~flow~operator}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {17-21}, zbl = {1212.58003}, mrnumber = {2431227}, language = {en}, url = {http://dml.mathdoc.fr/item/108092} }
Mikulski, Włodzimierz M. The jet prolongations of $2$-fibred manifolds and the flow operator. Archivum Mathematicum, Tome 044 (2008) pp. 17-21. http://gdmltest.u-ga.fr/item/108092/
On the geometry of variational calculus on some functional bundles, Note Mat. 26 (2) (2006), 51–57. (2006) | MR 2298069 | Zbl 1195.58007
Natural Operations in Differential Geometry, Springer-Verlag Berlin, 1993. (1993) | MR 1202431
The jet prolongations of fibered manifolds and the flow operator, Publ. Math. Debrecen 59 (2001), 441–458. (2001) | MR 1874443
The natural operators lifting projectable vector fields to some fiber product preserving bundles, Ann. Polon. Math. 81 (3) (2003), 261–271. (2003) | Article | MR 2044627 | Zbl 1099.58003