Let $R$ be a ring with an identity (not necessarily commutative) and let $M$ be a left $R$-module. This paper deals with multiplication and comultiplication left $R$-modules $M$ having right $\operatorname{End}_R(M)$-module structures.
@article{108091, author = {H. Ansari-Toroghy and F. Farshadifar}, title = {On endomorphisms of multiplication and~comultiplication modules}, journal = {Archivum Mathematicum}, volume = {044}, year = {2008}, pages = {9-15}, zbl = {1212.13006}, mrnumber = {2431226}, language = {en}, url = {http://dml.mathdoc.fr/item/108091} }
Ansari-Toroghy, H.; Farshadifar, F. On endomorphisms of multiplication and comultiplication modules. Archivum Mathematicum, Tome 044 (2008) pp. 9-15. http://gdmltest.u-ga.fr/item/108091/
Rings and categories of modules, Springer-Verlag, New York-Heidelberg-Berlin, 1974. (1974) | MR 0417223 | Zbl 0301.16001
The dual notion of multiplication modules, Taiwanese J. Math. (to appear). (to appear) | MR 2348561 | Zbl 1137.16302
On submodule inducing prime ideals of endomorphism ring, East Asian Math. 16 (1) (2000), 33–48. (2000)
Multiplication modules and endomorphisms, Math. J. Toyama Univ. 18 (1995), 1–8. (1995) | MR 1369692 | Zbl 0876.13001
On endomorphisms of multiplication modules, J. Korean Math. Soc. 31 (1) (1994), 89–95. (1994) | MR 1269453 | Zbl 0820.13003
Algebra II: Ring theory, Springer-Verlag, New York-Heidelberg-Berlin, 1976. (1976) | MR 0427349
Generalized Hopfian modules, J. Algebra 255 (2002), 324–341. (2002) | Article | MR 1935502
Modules whose injective endomorphism are essential, J. Algebra 243 (2001), 765–779. (2001) | Article | MR 1850657
Prime elements in partially ordered groupoid applied to modules and Hopf algebra actions, J. Algebra Appl. 4 (1) (2005), 77–98. (2005) | Article | MR 2130464