Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions
Belarbi, Abdelkader ; Benchohra, Mouffak ; Ouahab, Abdelghani
Archivum Mathematicum, Tome 044 (2008), p. 1-7 / Harvested from Czech Digital Mathematics Library

In this paper we investigate the existence of multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. We shall rely on the Leggett-Williams fixed point theorem.

Publié le : 2008-01-01
Classification:  34B10,  34B15,  34B18,  34B27,  47N20
@article{108090,
     author = {Abdelkader Belarbi and Mouffak Benchohra and Abdelghani Ouahab},
     title = {Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions},
     journal = {Archivum Mathematicum},
     volume = {044},
     year = {2008},
     pages = {1-7},
     zbl = {1212.34051},
     mrnumber = {2431225},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108090}
}
Belarbi, Abdelkader; Benchohra, Mouffak; Ouahab, Abdelghani. Multiple positive solutions for nonlinear boundary value problems with integral boundary conditions. Archivum Mathematicum, Tome 044 (2008) pp. 1-7. http://gdmltest.u-ga.fr/item/108090/

Agarwal, R. P.; O’Regan, D. Existence of three solutions to integral and discrete equations via the Leggett-Williams fixed point theorem, Rocky Mountain J. Math. 31 (2001), 23–35. (2001) | Article | MR 1821365 | Zbl 0979.45003

Agarwal, R. P.; O’Regan, D.; Wong, P. J. Y. Positive Solutions of Differential, Difference and Integral Equations, Kluwer Academic Publishers, Dordrecht, 1999. (1999) | MR 1680024

Ahmad, B; Khan, R. A.; Sivasundaram, S. Generalized quasilinearization method for a first order differential equation with integral boundary condition, Dynam. Contin. Discrete Impuls. Systems, Ser. A Math. Anal. 12 (2005), 289–296. (2005) | MR 2170414 | Zbl 1084.34007

Anderson, D.; Avery, R.; Peterson, A. Three positive solutions to a discrete focal boundary value problem. Positive solutions of nonlinear problems, J. Comput. Appl. Math. 88 (1998), 103–118. (1998) | Article | MR 1609058

Brykalov, S. A. A second order nonlinear problem with two-point and integral boundary conditions, Georgian Math. J. 1 (1994), 243–249. (1994) | Article | Zbl 0807.34021

Denche, M.; Marhoune, A. L. High-order mixed-type differential equations with weighted integral boundary conditions, Electron. J. Differential Equations 60 (2000), 1–10. (2000) | MR 1787207 | Zbl 0967.35101

Gallardo, J. M. Second-order differential operators with integral boundary conditions and generation of analytic semigroups, Rocky Mountain J. Math. 30 (2000), 265–1291. (2000) | MR 1810167 | Zbl 0984.34014

Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. (1988) | MR 0959889 | Zbl 0661.47045

Karakostas, G. L.; Tsamatos, P. Ch. Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems, Electron. J. Differential Equations 30 (2002), 17. (2002) | MR 1907706 | Zbl 0998.45004

Khan, R. A. The generalized method of quasilinearization and nonlinear boundary value problems with integral boundary conditions, Electron. J. Qual. Theory Differ. Equ. 19 (2003), 15. (2003) | MR 2039793 | Zbl 1055.34033

Krall, A. M. The adjoint of a differential operator with integral boundary condition, Proc. Amer. Math. Soc. 16 (1965), 738–742. (1965) | Article | MR 0181794

Leggett, R. W.; Williams, L.R. Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673–688. (1979) | Article | MR 0542951 | Zbl 0421.47033

Lomtatidze, A.; Malaguti, L. On a nonlocal boundary value problem for second order nonlinear singular differential equations, Georgian Math. J. 7 (2000), 133–154. (2000) | MR 1768050 | Zbl 0967.34011