Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
Krýsl, Svatopluk
Archivum Mathematicum, Tome 043 (2007), p. 467-484 / Harvested from Czech Digital Mathematics Library

Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.

Publié le : 2007-01-01
Classification:  35N10,  53D05,  58J05,  58J50,  58Jxx
@article{108085,
     author = {Svatopluk Kr\'ysl},
     title = {Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds},
     journal = {Archivum Mathematicum},
     volume = {043},
     year = {2007},
     pages = {467-484},
     zbl = {1199.58011},
     mrnumber = {2381789},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108085}
}
Krýsl, Svatopluk. Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds. Archivum Mathematicum, Tome 043 (2007) pp. 467-484. http://gdmltest.u-ga.fr/item/108085/

Baldoni W. General represenation theory of real reductive Lie groups, In: T. N. Bailey, A. W. Knapp: Representation Theory and Automorphic Forms, AMS (1997), 61–72. (1997) | MR 1476492

Britten D. J.; Hooper J.; Lemire F. W. Simple $C_n$-modules with multiplicities 1 and application, Canad. J. Phys. 72, Nat. Research Council Canada Press, Ottawa, ON (1994), 326–335. (1994) | MR 1297597

Green M. B.; Hull C. M. Covariant quantum mechanics of the superstring, Phys. Lett. B, 225 (1989), 57–65. (1989) | MR 1006387

Howe R. $\theta $-correspondence and invariance theory, Proceedings in Symposia in pure mathematics 33, part 1 (1979), 275–285. (1979) | MR 0546602

Habermann K. The Dirac operator on symplectic spinors, Ann. Global Anal. Geom. 13 (1995), 155–168. (1995) | MR 1336211 | Zbl 0842.58042

Habermann K.; Habermann L. Introduction to symplectic Dirac operators, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg, 2006. | MR 2252919 | Zbl 1102.53032

Kadlčáková L. Dirac operator in parabolic contact symplectic geometry, Ph.D. thesis, Charles University of Prague, Prague, 2001.

Kashiwara M.; Schmid W. Quasi-equivariant D-modules, equivariant derived category, and representations of reductive Lie groups, In: Lie Theory and Geometry, in Honor of Bertram Kostant, Progress in Mathematics, Birkhäuser 123 (1994), 457–488. (1994) | MR 1327544

Kashiwara M.; Vergne M. On the Segal-Shale-Weil representation and harmonic polynomials, Invent. Math. 44, No. 1, Springer-Verlag, New York, 1978, 1–49. (1978) | MR 0463359

Kostant B. Symplectic Spinors, Symposia Mathematica, Vol. XIV, Cambridge Univ. Press, Cambridge, 1974, 139–152. (1974) | MR 0400304 | Zbl 0321.58015

Krýsl S. Decomposition of the tensor product of a higher symplectic spinor module and the defining representation of $\mathfrak{sp}(2n,\mathbb{C})$, J. Lie Theory, No. 1, Heldermann Verlag, Darmstadt, 2007, pp. 63-72. | MR 2286881

Krýsl S. Symplectic spinor valued forms and operators acting between them, Arch. Math.(Brno) 42 (2006), 279–290. | MR 2322414

Krýsl S. Classification of $1^{st}$ order symplectic spinor operators in contact projective geometries, to appear in J. Differential Geom. Appl. | MR 2458281

Reuter M. Symplectic Dirac-Kähler Fields, J. Math. Phys. 40 (1999), 5593-5640; electronically available at hep-th/9910085. (1999) | MR 1722329 | Zbl 0968.81037

Rudnick S. Symplektische Dirac-Operatoren auf symmetrischen Räumen, Diploma Thesis, University of Greifswald, Greifswald, 2005.

Schmid W. Boundary value problems for group invariant differential equations, Elie Cartan et les Mathematiques d’aujourd’hui, Asterisque, 1685, 311–322. | MR 0837206 | Zbl 0621.22014

Severa V. Invariant differential operators on spinor-valued differential forms, Ph.D. thesis, Charles University of Prague, Prague, 1998. (1998)

Sommen F.; Souček V. Monogenic differential forms, Complex Variables Theory Appl. 19 (1992), 81–90. (1992) | MR 1228331 | Zbl 0765.30032

Tirao J.; Vogan D. A.; Wolf J. A. Geometry and Representation Theory of Real and $p$-Adic Groups, Birkhäuser, 1997. (1997) | MR 1486131

Vogan D. Unitary representations and complex analysis, electronically available at http://www-math.mit.edu/$\sim $dav/venice.pdf. | Zbl 1143.22002

Weil A. Sur certains groups d’opérateurs unitaires, Acta Math. 111 (1964), 143–211. (1964) | MR 0165033

Woodhouse N. M. J. Geometric quantization, 2nd ed., Oxford Mathematical Monographs, Clarendon Press, Oxford, 1997. (1997) | MR 1183739 | Zbl 0907.58026