In this note we prove that any integral closed $k$-form $\phi ^k$, $k\ge 3$, on a m-dimensional manifold $M^m$, $m \ge k$, is the restriction of a universal closed $k$-form $h^k$ on a universal manifold $U^{d(m,k)}$ as a result of an embedding of $M^m$ to $U^{d(m,k)}$.
@article{108083, author = {H\^ong-V\^an L\^e}, title = {Universal spaces for manifolds equipped with an integral closed $k$-form}, journal = {Archivum Mathematicum}, volume = {043}, year = {2007}, pages = {443-457}, zbl = {1199.53077}, mrnumber = {2381787}, language = {en}, url = {http://dml.mathdoc.fr/item/108083} }
Hông-Vân Lê. Universal spaces for manifolds equipped with an integral closed $k$-form. Archivum Mathematicum, Tome 043 (2007) pp. 443-457. http://gdmltest.u-ga.fr/item/108083/
Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. 67 (2), (1958), 239–281. (1958) | MR 0097062 | Zbl 0091.37102
Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312. (1961) | MR 0150183 | Zbl 0098.36005
Partial Differential Relations, Springer-Verlag 1986, also translated in Russian, (1990), Moscow-Mir. (1986) | MR 0864505 | Zbl 0651.53001
, privat communication. | Zbl 1223.37080
The embedding problem for Riemannian manifolds, Ann. of Math. 63 (1), (1956), 20–63. (1956) | MR 0075639
Manifolds admitting stable forms, Comment. Math. Univ. Carolin. (2007), to appear. | MR 2433628 | Zbl 1212.53051
Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86. (1954) | MR 0061823 | Zbl 0057.15502
Closed 2-forms and an embedding theorem for symplectic manifolds, J. Differential Geom. 12 (1977), 229–235. (1977) | MR 0488108 | Zbl 0386.58001