We describe invariant principal and Cartan connections on homogeneous principal bundles and show how to calculate the curvature and the holonomy; in the case of an invariant Cartan connection we give a formula for the infinitesimal automorphisms. The main result of this paper is that the above calculations are purely algorithmic. As an example of an homogeneous parabolic geometry we treat a conformal structure on the product of two spheres.
@article{108082, author = {Matthias Hammerl}, title = {Homogeneous Cartan geometries}, journal = {Archivum Mathematicum}, volume = {043}, year = {2007}, pages = {431-442}, zbl = {1199.53021}, mrnumber = {2381786}, language = {en}, url = {http://dml.mathdoc.fr/item/108082} }
Hammerl, Matthias. Homogeneous Cartan geometries. Archivum Mathematicum, Tome 043 (2007) pp. 431-442. http://gdmltest.u-ga.fr/item/108082/
A theorem on holonomy, Trans. Amer. Math. Soc. 75 (1953), 428–443. (1953) | MR 0063739 | Zbl 0052.18002
Definite signature conformal holonomy: a complete classification, 2005. math.DG/0503388.
Infinitesimal automorphisms and deformations of parabolic geometries, 2005, to appear in J. Europ. Math. Soc. math.DG/0508535. | MR 2390330 | Zbl 1161.32020
On left invariant CR structures on SU(2), 2006. math.DG/0603730. | MR 2322406 | Zbl 1164.32304
Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29(3) (2000), 453–505. | MR 1795487 | Zbl 0996.53023
Parabolic Geometries, Book in preparation.
Les espaces à connexion conforme, Ann. Soc. Pol. Math. (2) (1923), 172–202. (1923)
Homogeneous Cartan geometries, Diploma thesis, 2006. http://www.mat.univie.ac.at/~cap/files/Hammerl.pdf. | MR 2381786 | Zbl 1199.53021
Conformal holonomy of bi-invariant metrics, 2004. math.DG/0406299. | Zbl 1138.53041
Topics in Differential Geometry, Book in preparation. http://www.mat.univie.ac.at/~michor/dgbook.ps. | MR 2428390 | Zbl 1175.53002
On the equivalence problem associated with simple graded Lie algebras, Hokkaido Math. J. (1979), 23–84. (1979) | MR 0533089
On invariant connections over a principal fibre bundle, Nagoya Math. J. 13 (1958), 1–19. (1958) | MR 0107276 | Zbl 0086.36502
Differential systems associated with simple graded Lie algebras, Adv. Stud. Pure Math. (1993), 413–494. (1993) | MR 1274961 | Zbl 0812.17018