Given a hereditary torsion theory $\tau = (\mathbb {T},\mathbb {F})$ in Mod-$R$, a module $M$ is called $\tau $-supplemented if every submodule $A$ of $M$ contains a direct summand $C$ of $M$ with $A/C$ $\tau -$torsion. A submodule $V$ of $M$ is called $\tau $-supplement of $U$ in $M$ if $U+V=M$ and $U\cap V\le \tau (V)$ and $M$ is $\tau $-weakly supplemented if every submodule of $M$ has a $\tau $-supplement in $M$. Let $M$ be a $\tau $-weakly supplemented module. Then $M$ has a decomposition $M=M_1\oplus M_2$ where $M_1$ is a semisimple module and $M_2$ is a module with $\tau (M_2)\le _e M_2$. Also, it is shown that; any finite sum of $\tau $-weakly supplemented modules is a $\tau $-weakly supplemented module.
@article{108069, author = {Muhammet Tamer Ko\c san}, title = {$\tau $-supplemented modules and $\tau $-weakly supplemented modules}, journal = {Archivum Mathematicum}, volume = {043}, year = {2007}, pages = {251-257}, zbl = {1156.16006}, mrnumber = {2378525}, language = {en}, url = {http://dml.mathdoc.fr/item/108069} }
Koşan, Muhammet Tamer. $\tau $-supplemented modules and $\tau $-weakly supplemented modules. Archivum Mathematicum, Tome 043 (2007) pp. 251-257. http://gdmltest.u-ga.fr/item/108069/
Rings and Categories of Modules, Springer-Verlag, New York, 1992. (1992) | MR 1245487 | Zbl 0765.16001
Lifting Modules, Birkhäuser, Basel, 2006. | MR 2253001 | Zbl 1102.16001
Torsion Theories, Pitman Monographs and Surveys in Pure and Applied Mathematics 29, New York, John Wiley & Sons, 1986. (1986) | MR 0880019 | Zbl 0657.16017
Modules supplemented with respect to a torsion theory, Turkish J. Math. 28 (2), (2004), 177–184. | MR 2062562
Decompositions of Modules supplemented with respect to a torsion theory, Internat. J. Math. 16 (1), (2005), 43–52. | MR 2115677
$\oplus $-supplemented modules relative to a torsion theory, New-Zealand J. Math. 35 (2006), 63–75. | MR 2222176 | Zbl 1104.16026
Continuous and discrete modules, London Math. Soc. LNS 147, Cambridge Univ. Press, Cambridge (1990). (1990) | MR 1084376 | Zbl 0701.16001
Modules complemented with respect to a torsion theory, Comm. Algebra 25 (1997), 1307–1326. (1997) | MR 1437673
Rings of quotients, Springer Verlag, Berlin, 1975. (1975) | MR 0389953
Foundations of module and ring theory, Gordon and Breach, Reading, 1991. (1991) | MR 1144522 | Zbl 0746.16001
Generalizations of perfect, semiperfect, and semiregular rings, Algebra Colloquium 7 (3), (2000), 305–318. | MR 1810586 | Zbl 0994.16016