Loading [MathJax]/extensions/MathZoom.js
The geometry of Newton's law and rigid systems
Modugno, Marco ; Vitolo, Raffaele
Archivum Mathematicum, Tome 043 (2007), p. 197-229 / Harvested from Czech Digital Mathematics Library

We start by formulating geometrically the Newton’s law for a classical free particle in terms of Riemannian geometry, as pattern for subsequent developments. For constrained systems we have intrinsic and extrinsic viewpoints, with respect to the environmental space. Multi–particle systems are modelled on $n$-th products of the pattern model. We apply the above scheme to discrete rigid systems. We study the splitting of the tangent and cotangent environmental space into the three components of center of mass, of relative velocities and of the orthogonal subspace. This splitting yields the classical components of linear and angular momentum (which here arise from a purely geometric construction) and, moreover, a third non standard component. The third projection yields a new explicit formula for the reaction force in the nodes of the rigid constraint.

Publié le : 2007-01-01
Classification:  37Jxx,  70B10,  70Bxx,  70Exx,  70Fxx,  70G45
@article{108065,
     author = {Marco Modugno and Raffaele Vitolo},
     title = {The geometry of Newton's law and rigid systems},
     journal = {Archivum Mathematicum},
     volume = {043},
     year = {2007},
     pages = {197-229},
     zbl = {1164.70014},
     mrnumber = {2354808},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108065}
}
Modugno, Marco; Vitolo, Raffaele. The geometry of Newton's law and rigid systems. Archivum Mathematicum, Tome 043 (2007) pp. 197-229. http://gdmltest.u-ga.fr/item/108065/

Abraham R.; Marsden J. Foundations of Mechanics, Benjamin, New York, 1986. (1986)

Arnol’D V. I. Mathematical methods of classical mechanics, MIR, Moscow 1975; GTM n. 70, Springer. (1975) | MR 0997295

Cortizo S. F. Classical mechanics–on the deduction of Lagrange’s equations, Rep. Math. Phys. 29, No. 1 (1991), 45–54. (1991) | MR 1137498 | Zbl 0744.70024

Crampin M. Jet bundle techniques in analytical mechanics, Quaderni del CNR, GNFM, Firenze, 1995. (1995)

Curtis W. D.; Miller F. R. Differentiable manifolds and theoretical physics, Academic Press, New York, 1985. (1985) | MR 0793015

De Leon M.; Rodriguez P. R. Methods of differential geometry in analytical mechanics, North Holland, Amsterdam, 1989. (1989) | MR 1021489

Gallot S.; Hulin D.; Lafontaine J. Riemannian Geometry, II ed., Springer Verlag, Berlin, 1990. (1990) | MR 1083149 | Zbl 0716.53001

Godbillon C. Geometrie differentielle et mechanique analytique, Hermann, Paris, 1969. (1969) | MR 0242081 | Zbl 0174.24602

Goldstein H. Classical Mechanics, II ed., Addison–Wesley, London, 1980. (1980) | MR 0575343 | Zbl 0491.70001

Guillemin V.; Sternberg S. Symplectic techniques in physics, Cambridge Univ. Press, 1984. (1984) | MR 0770935 | Zbl 0576.58012

Janyška J.; Modugno M.; Vitolo R. Semi–vector spaces, preprint 2005.

Landau L.; Lifchits E. Mechanics, MIR, Moscow 1975. (1975)

Levi–Civita T.; Amaldi U. Lezioni di Meccanica Razionale, vol. II, II ed., Zanichelli, Bologna, 1926. (1926)

Libermann P. Marle C.-M. Symplectic geometry and analytical mechanics, Reidel, Dordrecht, 1987. (1987) | MR 0882548

Lichnerowicz A. Elements of tensor calculus, John Wiley & Sons, New York, 1962. (1962) | MR 0149903 | Zbl 0103.38402

Littlejohn R. G.; Reinsch M. Gauge fields in the separation of rotations and internal motions in the $n$–body problem, Rev. Modern Phys. 69, 1 (1997), 213–275. (1997) | MR 1432649

Marsden J. E.; Ratiu T. Introduction to Mechanics and Symmetry, Texts Appl. Math. 17, Springer, New York, 1995. (1995) | MR 1723696

Massa E.; Pagani E. Classical dynamics of non–holonomic systems: a geometric approach, Ann. Inst. H. Poincaré 55, 1 (1991), 511–544. (1991) | MR 1130215 | Zbl 0731.70012

Massa E.; Pagani E. Jet bundle geometry, dynamical connections and the inverse problem of Lagrangian mechanics, Ann. Inst. H. Poincaré (1993). (1993)

Modugno M.; Tejero Prieto C.; Vitolo R. A covariant approach to the quantisation of a rigid body, preprint 2005.

Park F. C.; Kim M. W. Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies, Z. Angew. Math. Phys. 51 (2000), 820–834. | MR 1788187 | Zbl 0998.70004

Souriau J.-M. Structure des systèmes dynamiques, Dunod, Paris 1969. (1969) | MR 0260238

Tulczyjew W. M. An intrinsic formulation of nonrelativistic analytical mechanics and wave mechanics, J. Geom. Phys. 2, 3 (1985), 93–105. (1985) | MR 0851123 | Zbl 0601.70001

Vershik A. M.; Faddeev L. D. Lagrangian mechanics in invariant form, Sel. Math. Sov. 4 (1981), 339–350. (1981)

Warner F. W. Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Illinois, 1971. (1971) | MR 0295244 | Zbl 0241.58001

Whittaker E. T. A treatise on the analytical dynamics of particles and rigid bodies, Wiley, New York, 1936. (1936)