Ideal amenability of module extensions of Banach algebras
Gordji, Eshaghi M. ; Habibian, F. ; Hayati, B.
Archivum Mathematicum, Tome 043 (2007), p. 177-184 / Harvested from Czech Digital Mathematics Library

Let $\cal A$ be a Banach algebra. $\cal A$ is called ideally amenable if for every closed ideal $I$ of $\cal A$, the first cohomology group of $\cal A$ with coefficients in $I^*$ is zero, i.e. $H^1({\cal A}, I^*)=\lbrace 0\rbrace $. Some examples show that ideal amenability is different from weak amenability and amenability. Also for $n\in {N}$, $\cal A$ is called $n$-ideally amenable if for every closed ideal $I$ of $\cal A$, $H^1({\cal A},I^{(n)})=\lbrace 0\rbrace $. In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.

Publié le : 2007-01-01
Classification:  46Hxx
@article{108063,
     author = {Eshaghi M. Gordji and F. Habibian and B. Hayati},
     title = {Ideal amenability of module extensions of Banach algebras},
     journal = {Archivum Mathematicum},
     volume = {043},
     year = {2007},
     pages = {177-184},
     zbl = {1164.46020},
     mrnumber = {2354806},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108063}
}
Gordji, Eshaghi M.; Habibian, F.; Hayati, B. Ideal amenability of module extensions of Banach algebras. Archivum Mathematicum, Tome 043 (2007) pp. 177-184. http://gdmltest.u-ga.fr/item/108063/

Bade W. G.; Curtis P. G.; Dales H. G., Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. (3) 55 (1987), 359–377. (1987) | MR 0896225

Dales H. G.; Ghahramani F.; Grønbæk N. Derivations into iterated duals of Banach algebras, Studia Math. 128 (1998), 19–54. (1998) | MR 1489459

Despic M.; Ghahramani F. Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165–167. (1994) | MR 1275699 | Zbl 0813.43001

Eshaghi Gordji M.; Hosseiniun S. A. R. Ideal amenability of Banach algebras on locally compact groups, Proc. Indian Acad. Sci. 115, 3 (2005), 319–325. | MR 2161735 | Zbl 1098.46033

Eshaghi Gordji M.; Hayati B.; Hosseiniun S. A. R. Derivations into duals of closed ideals of Banach algebras, submitted.

Eshaghi Gordji M.; Habibian F.; Rejali A. Ideal amenability of module extension Banach algebras, Int. J. Contemp. Math. Sci. 2, 5 (2007), 213–219. | MR 2296773 | Zbl 1120.46308

Eshaghi Gordji M.; Memarbashi R. Derivations into n-th duals of ideals of Banach algebras, submitted. | Zbl 1154.46026

Eshaghi Gordji M.; Yazdanpanah T. Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci. 114, 4 (2004), 399–408. | MR 2067702

Grønbæk N. A characterization of weakly amenable Banach algebras, Studia Math. 94 (1989), 150–162. (1989) | MR 1025743

Grønbæk N. Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburg Math. Soc. 35 (1992), 315–328. (1992) | MR 1169250

Haagerup U. All nuclear ${\mathcal C}^*$-algebras are amenable, Invent. Math. 74 (1983), 305–319. (1983) | MR 0723220

Johnson B. E. Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). (1972) | MR 0374934 | Zbl 0256.18014

Johnson B. E. Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281–284. (1991) | MR 1123339 | Zbl 0757.43002

Johnson B. E.; White M. C. A non-weakly amenable augmentation ideal, submitted.

Wassermann S. On tensor products of certain group $C^*-$algebras, J. Funct. Anal. 23 (1976), 28–36. (1976) | MR 0425628 | Zbl 0358.46040

Zhang; Yong Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354, (10) (2002), 4131–4151. | MR 1926868 | Zbl 1008.46019