On locally Lipschitz locally compact transformation groups of manifolds
George Michael, A. A.
Archivum Mathematicum, Tome 043 (2007), p. 159-162 / Harvested from Czech Digital Mathematics Library

In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds.

Publié le : 2007-01-01
Classification:  57S05
@article{108061,
     author = {A. A. George Michael},
     title = {On locally Lipschitz locally compact transformation groups of manifolds},
     journal = {Archivum Mathematicum},
     volume = {043},
     year = {2007},
     pages = {159-162},
     zbl = {1164.57014},
     mrnumber = {2354804},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108061}
}
George Michael, A. A. On locally Lipschitz locally compact transformation groups of manifolds. Archivum Mathematicum, Tome 043 (2007) pp. 159-162. http://gdmltest.u-ga.fr/item/108061/

Bochner S.; Montgomery D. Locally compact groups of differentiable transformations, Ann. of Math. (2) 47 (1946), 639–653. (1946) | MR 0018187 | Zbl 0061.04407

Bourbaki N. Topologie générale, Chap. 1-4, Hermann, Paris 1971. (1971) | MR 0358652

Bredon G. E.; Raymond F.; Williams R. F. $p$-Adic transformation groups, Trans. Amer. Math. Soc. 99 (1961), 488–498. (1961) | MR 0142682

Dieudonne J. Foundations of modern analysis, Academic Press, New York–London 1960. (1960) | MR 0120319 | Zbl 0100.04201

Dress A. Newman’s theorems on transformation groups, Topology, 8 (1969), 203–207. (1969) | MR 0238353 | Zbl 0176.53201

Federer H. Geometric measure theory, Springer-Verlag, Berlin–Heidelberg–New York, N.Y., 1969. (1969) | MR 0257325 | Zbl 0176.00801

Hofmann K. H.; Morris S. A. The structure of compact groups, de Gruyter Stud. Math. 25 (1998). (1998) | MR 1646190 | Zbl 0919.22001

Karube T. Transformation groups satisfying some local metric conditions, J. Math. Soc. Japan 18, No. 1 (1966), 45–50. (1966) | MR 0188342 | Zbl 0136.43801

Kuranishi M. On conditions of differentiability of locally compact groups, Nagoya Math. J. 1 (1950), 71–81. (1950) | MR 0038355 | Zbl 0037.30502

Michael G. On the smoothing problem, Tsukuba J. Math. 25, No. 1 (2001), 13–45. | MR 1846867 | Zbl 0988.57014

Montgomery D. Finite dimensionality of certain transformation groups, Illinois J. Math. 1 (1957), 28–35. (1957) | MR 0083680 | Zbl 0077.36702

Montgomery D.; Zippin L. Topological transformation groups, Interscience Publishers, New York, 1955. (1955) | MR 0073104 | Zbl 0068.01904

Nagami K. R. Mappings of finite order and dimension theory, Japan J. Math. 30 (1960), 25–54. (1960) | MR 0142101 | Zbl 0106.16002

Nagami K. R. Dimension-theoretical structure of locally compact groups, J. Math. Soc. Japan 14, No. 4 (1962), 379–396. (1962) | MR 0142679 | Zbl 0118.27001

Nagami K. R. Dimension theory, Academic Press, New York, 1970. (1970) | MR 0271918 | Zbl 0224.54060

Nagata J. Modern dimension theory, Sigma Ser. Pure Math. 2 (1983). (1983) | Zbl 0518.54002

Repovš D.; Ščepin E. V. A proof of the Hilbert-Smith conjecture for actions by Lipschitz maps, Math. Ann. 308 (1997), 361–364. (1997) | MR 1464908 | Zbl 0879.57025

Yang C. T. p-adic transformation groups, Michigan Math. J. 7 (1960), 201–218. (1960) | MR 0120310 | Zbl 0094.17502