Hexagonal quasigroup is idempotent, medial and semisymmetric quasigroup. In this article we define and study symmetries about a point, segment and ordered triple of points in hexagonal quasigroups. The main results are the theorems on composition of two and three symmetries.
@article{108057, author = {Vladim\'\i r Volenec and Mea Bombardelli}, title = {Symmetries in hexagonal quasigroups}, journal = {Archivum Mathematicum}, volume = {043}, year = {2007}, pages = {123-132}, zbl = {1156.20066}, mrnumber = {2336964}, language = {en}, url = {http://dml.mathdoc.fr/item/108057} }
Volenec, Vladimír; Bombardelli, Mea. Symmetries in hexagonal quasigroups. Archivum Mathematicum, Tome 043 (2007) pp. 123-132. http://gdmltest.u-ga.fr/item/108057/
Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. [421] 5 (1986), 79–91. (1986) | MR 0857271 | Zbl 0599.20112
Geometry of IM quasigroups, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [456] 10 (1991), 139–146. (1991) | MR 1211606 | Zbl 0794.51010
Hexagonal quasigroups, Arch. Math. (Brno), 27a (1991), 113–122. (1991) | MR 1189648 | Zbl 0780.20046
Regular triangles in hexagonal quasigroups, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. [467] 11 (1994), 85–93. (1994) | MR 1362503 | Zbl 0841.20063
Vectors and transfers in hexagonal quasigroups, to be published in Glas. Mat. Ser. III. | MR 2376913