Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated.
@article{108049, author = {Zhongkui Liu}, title = {On $S$-Noetherian rings}, journal = {Archivum Mathematicum}, volume = {043}, year = {2007}, pages = {55-60}, zbl = {1160.16307}, mrnumber = {2310124}, language = {en}, url = {http://dml.mathdoc.fr/item/108049} }
Liu, Zhongkui. On $S$-Noetherian rings. Archivum Mathematicum, Tome 043 (2007) pp. 55-60. http://gdmltest.u-ga.fr/item/108049/
Anti-archimedean rings and power series rings, Comm. Algebra 26 (1998), 3223–3238. (1998) | MR 1641603 | Zbl 0912.13008
$S$-Noetherian rings, Comm. Algebra 30 (2002), 4407–4416. | MR 1936480 | Zbl 1060.13007
Noetherian generalized power series rings, Comm. Algebra 32 (2004), 919–926. | MR 2063789 | Zbl 1062.16049
A localization of a power series ring over a valuation domain, J. Pure Appl. Algebra 140 (1999), 107–124. (1999) | MR 1693896 | Zbl 0971.13012
Endomorphism rings of modules of generalized inverse polynomials, Comm. Algebra 28 (2000), 803–814. | MR 1736764 | Zbl 0949.16026
Noetherian rings of generalized power series, J. Pure Appl. Algebra 79 (1992), 293–312. (1992) | MR 1167578 | Zbl 0761.13007
Rings of generalized power series II: units and zero-divisors, J. Algebra 168 (1994), 71–89. (1994) | MR 1289092 | Zbl 0806.13011
Special properties of generalized power series, J. Algebra 173 (1995), 566–586. (1995) | MR 1327869 | Zbl 0852.13008
Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra 198 (1997), 327–338. (198 ) | MR 1489900
Noetherian generalized power series rings and modules, Comm. Algebra 29 (2001), 245–251. | MR 1842494 | Zbl 1005.16043
Generalized power series modules, Comm. Algebra 29 (2001), 1281–1294. | MR 1842412 | Zbl 0988.16035