Classification of rings satisfying some constraints on subsets
Khan, Moharram A.
Archivum Mathematicum, Tome 043 (2007), p. 19-29 / Harvested from Czech Digital Mathematics Library

Let $R$ be an associative ring with identity $1$ and $J(R)$ the Jacobson radical of $R$. Suppose that $m\ge 1$ is a fixed positive integer and $R$ an $m$-torsion-free ring with $1$. In the present paper, it is shown that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m]=0$ for all $x,y\in R\backslash J(R)$ and (ii) $[x,[x,y^m]]=0$, for all $x,y\in R\backslash J(R)$. This result is also valid if (ii) is replaced by (ii)’ $[(yx)^mx^m-x^m(xy)^m,x]=0$, for all $x,y\in R\backslash N(R)$. Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).

Publié le : 2007-01-01
Classification:  16U80
@article{108046,
     author = {Moharram A. Khan},
     title = {Classification of rings satisfying some constraints on subsets},
     journal = {Archivum Mathematicum},
     volume = {043},
     year = {2007},
     pages = {19-29},
     zbl = {1156.16304},
     mrnumber = {2310121},
     language = {en},
     url = {http://dml.mathdoc.fr/item/108046}
}
Khan, Moharram A. Classification of rings satisfying some constraints on subsets. Archivum Mathematicum, Tome 043 (2007) pp. 19-29. http://gdmltest.u-ga.fr/item/108046/

Abu-Khuzam H.; Tominaga H.; Yaqub A. Commutativity theorems for $s$-unital rings satisfying polynomial identities, Math. J. Okayama Univ. 22 (1980), 111–114. (1980) | MR 0595791 | Zbl 0451.16023

Abu-Khuzam H. A commutativity theorem for periodic rings, Math. Japon. 32 (1987), 1–3. (1987) | MR 0886192 | Zbl 0609.16020

Abu-Khuzam H.; Bell H. E.; Yaqub A. Commutativity of rings satisfying certain polynomial identities, Bull. Austral. Math. Soc. 44 (1991), 63–69. (1991) | MR 1120394 | Zbl 0721.16020

Abu-Khuzam H.; Yaqub A. Commutativity of rings satisfying some polynomial constraints, Acta Math. Hungar. 67 (1995), 207–217. (1995) | MR 1315805

Bell H. E. Some commutativity results for periodic rings, Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. (1976) | MR 0419535 | Zbl 0335.16035

Bell H. E. On rings with commutativity powers, Math. Japon. 24 (1979), 473–478. (1979) | MR 0557482

Herstein I. N. A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620. (1954) | MR 0062714 | Zbl 0055.26003

Herstein I. N. A commutativity theorem, J. Algebra 38 (1976), 112–118. (1976) | MR 0396687 | Zbl 0323.16014

Herstein I. N. Power maps in rings, Michigan Math. J. 8 (1961), 29–32. (1961) | MR 0118741 | Zbl 0096.25701

Hirano Y.; Hongon M.; Tominaga H. Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65–72. (1980) | MR 0573674

Hongan M.; Tominaga H. Some commutativity theorems for semiprime rings, Hokkaido Math. J. 10 (1981), 271–277. (1981) | MR 0662304

Jacobson N. Structure of Rings, Amer. Math. Soc. Colloq. Publ. Providence 1964. (1964)

Kezlan T. P. A note on commutativity of semiprime $PI$-rings, Math. Japon. 27 (1982), 267–268. (1982) | MR 0655230 | Zbl 0481.16013

Khan M. A. Commutativity of rings with constraints involving a subset, Czechoslovak Math. J. 53 (2003), 545–559. | MR 2000052 | Zbl 1080.16508

Nicholson W. K.; Yaqub A. A commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419–423. (1979) | MR 0563755 | Zbl 0605.16020