Let $R$ be an associative ring with identity $1$ and $J(R)$ the Jacobson radical of $R$. Suppose that $m\ge 1$ is a fixed positive integer and $R$ an $m$-torsion-free ring with $1$. In the present paper, it is shown that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m]=0$ for all $x,y\in R\backslash J(R)$ and (ii) $[x,[x,y^m]]=0$, for all $x,y\in R\backslash J(R)$. This result is also valid if (ii) is replaced by (ii)’ $[(yx)^mx^m-x^m(xy)^m,x]=0$, for all $x,y\in R\backslash N(R)$. Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]).
@article{108046, author = {Moharram A. Khan}, title = {Classification of rings satisfying some constraints on subsets}, journal = {Archivum Mathematicum}, volume = {043}, year = {2007}, pages = {19-29}, zbl = {1156.16304}, mrnumber = {2310121}, language = {en}, url = {http://dml.mathdoc.fr/item/108046} }
Khan, Moharram A. Classification of rings satisfying some constraints on subsets. Archivum Mathematicum, Tome 043 (2007) pp. 19-29. http://gdmltest.u-ga.fr/item/108046/
Commutativity theorems for $s$-unital rings satisfying polynomial identities, Math. J. Okayama Univ. 22 (1980), 111–114. (1980) | MR 0595791 | Zbl 0451.16023
A commutativity theorem for periodic rings, Math. Japon. 32 (1987), 1–3. (1987) | MR 0886192 | Zbl 0609.16020
Commutativity of rings satisfying certain polynomial identities, Bull. Austral. Math. Soc. 44 (1991), 63–69. (1991) | MR 1120394 | Zbl 0721.16020
Commutativity of rings satisfying some polynomial constraints, Acta Math. Hungar. 67 (1995), 207–217. (1995) | MR 1315805
Some commutativity results for periodic rings, Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. (1976) | MR 0419535 | Zbl 0335.16035
On rings with commutativity powers, Math. Japon. 24 (1979), 473–478. (1979) | MR 0557482
A note on rings with central nilpotent elements, Proc. Amer. Math. Soc. 5 (1954), 620. (1954) | MR 0062714 | Zbl 0055.26003
A commutativity theorem, J. Algebra 38 (1976), 112–118. (1976) | MR 0396687 | Zbl 0323.16014
Power maps in rings, Michigan Math. J. 8 (1961), 29–32. (1961) | MR 0118741 | Zbl 0096.25701
Commutativity theorems for certain rings, Math. J. Okayama Univ. 22 (1980), 65–72. (1980) | MR 0573674
Some commutativity theorems for semiprime rings, Hokkaido Math. J. 10 (1981), 271–277. (1981) | MR 0662304
Structure of Rings, Amer. Math. Soc. Colloq. Publ. Providence 1964. (1964)
A note on commutativity of semiprime $PI$-rings, Math. Japon. 27 (1982), 267–268. (1982) | MR 0655230 | Zbl 0481.16013
Commutativity of rings with constraints involving a subset, Czechoslovak Math. J. 53 (2003), 545–559. | MR 2000052 | Zbl 1080.16508
A commutativity theorem for rings and groups, Canad. Math. Bull. 22 (1979), 419–423. (1979) | MR 0563755 | Zbl 0605.16020